Brittle Stars inspire new generation robots able to adapt to physical damage
Research Press Release | December 15, 2017
Joint press release by Tohoku University, Japan Science and Technology Agency and Hokkaido University
Researchers at Tohoku University and Hokkaido University have, for the first time, succeeded in developing a robot capable of immediately adapting to unexpected physical damage.
This is a significant breakthrough as robots are increasingly expected to function in tough environments under hazardous conditions.
Conventional robots tend to require a considerable amount of time (several tens of seconds) to adapt when they incur unexpected physical damage. To address this problem, researchers led by Professor Akio Ishiguro of the Research Institute of Electrical Communication at Tohoku University, focused on a brittle star – a primitive echinoderm with five flexible arms. Brittle stars lack a sophisticated central nervous system, yet are able to immediately adapt to an arbitrary loss of their arms and still move by coordinating the remaining arms.
Based on behavioral experiments involving brittle stars whose arms were amputated in various ways, the researchers proposed a simple decentralized control mechanism in which each arm kicks the ground only when it obtains an assistive reaction force. This mechanism was implemented in a brittle star-like robot to demonstrate that it can adapt to unexpected physical damage within a few seconds, like its biological model.
The researchers hope that this finding will help develop resilient robots that can work in inhospitable environments such as disaster areas. It also provides insights into the essential mechanism underlying resilient animal locomotion.
Original paper:
Takeshi Kano, Eiki Sato, Tatsuya Ono, Hitoshi Aonuma, Yoshiya Matsuzaka and Akio Ishiguro. A Brittle Star-like Robot Capable of Immediately Adapting to Unexpected Physical Damage. Royal Society Open Science, December 13, 2017.
DOI: 10.1098/rsos.171200
Contacts:
Research Institute of Electrical Communication
Tohoku University
Email: ishiguro[at]riec.tohoku.ac.jp
Associate Professor Hitoshi Aonuma
Research Institute for Electronic Science
Hokkaido University
Email: aon[at]es.hokudai.ac.jp
Naoki Namba (Media Officer)
Global Relations Office
Institute for International Collaboration
Hokkaido University
Tel: +81-11-706-2185
Email: pr[at]oia.hokudai.ac.jp