Innovation & Universities ~From our experiences~

STI (Science, Technology & Innovation) Policy of Japan

Michinari Hamaguchi

Chairperson of the Council for Science and Technology, <u>Ministry of</u> <u>E</u>ducation, <u>C</u>ulture, <u>S</u>ports, <u>S</u>cience and <u>T</u>echnology (MEXT), President of Japan Science and Technology Agency (JST) _{Nov. 5}, 2015 at Sapporo

Preface Science for the 21th century

2

Japan Science and Technology Agency

DECLARATION ON SCIENCE AND THE USE OF SCIENTIFIC KNOWLEDGE (Budapest Declaration 1999)

- 1. Science for knowledge; knowledge for progress
- 2. Science for peace
- 3. Science for development
- 4. Science in society and science for society

The practice of scientific research and the use of knowledge from that research should always aim at the welfare of humankind, including the reduction of poverty, be respectful of the dignity and rights of human beings, and of the global environment, and take fully into account our responsibility towards present and future generations.

The 21st Century: An Era for Realizing a Sustainable Society

- Exhaustion of resources, food crisis, global warming, environmental destruction and dramatic increase of world population
- Seven billion people around the world must learn to live together
- Shift from **competition to coexistence**: a global challenge to foster individuals who will create a new set of values
- Aspiring to overcome environmental pollution and realize a safe, free and equal society

The 21st Century: An Era of the Information Revolution

- Information Revolution
 - A framework of knowledge has been reconstructed via flattened, instant, and fluidized information
 - With the dramatic increase in information, traditional education that sorts out information and passes it down to the next generation is partly dysfunctional.

Japan Science and Technology Agency

5

THE FUTURE OF EMPLOYMENT: HOW SUSCEPTIBLE ARE JOBS TO COMPUTERISATION?

C. B. Frey & M. A. Osborne 2013 University of Oxford.

Japan Science and Technology Agency

Why innovations?

Global Biosphere in DangerThe Information Revolution

Creation of a new set of values through innovations (development of innovative science and technology)

> The 21st Century: An era for realizing a sustainable society

- Individualization and collaboration: a new type of university network
- From competition to coexistence
- Realization of a safe, free and equal society

STI (Science, Technology & Innovation) Policy of Japan

Overview of Japanese Funding for Innovation

Japan Science and Technology Agency

STI Administration in Japan

Cabinet Office

Council for S&T Innovation (CSTI)

- (1) Investigation and deliberation on basic policy relating to S&T
- (2) Investigation and deliberation concerning the policy for allocation of S&T related budget, human resources, etc.

Prime Minister

(3) Evaluation of nationally important R&D

Overview of Competitive Funding System of Japan

The Science and Technology Basic Plan

The 5th Science and Technology Basic Plan FY2016-FY2020

Three important matters (Under consideration)

- 1. Efforts to get ahead of time towards the future industrial creation and social change in the revolution era
- 2. Efforts to take the initiative towards the resolution of the economic and social issues
- **3.** Efforts to reinforce the fundamental ability to adapt unexpected changes

Developing the innovation systems to induce positive growth cycle of human resources, knowledge, and funds in order to accomplish these 3 matters

Roles & Activities of JST

Japan Science and Technology Agency

Declaration as the President of JST

Assuming a Leadership Role in Creating Innovation **That Establishes a Future Society**

Japan Science and Technology Agency

JST has a leadership role in developing both Japanese and global science and technology (S&T) as an innovation navigator.

JST's Operating Policy

Mission

We contribute to actualize the prosperity and sustainable society in Japan through implementing the advanced R&D as well as transferring achievements to the industry.

Vision

- 1. Achieving innovations in science and technology through creative research and development
- 2. Maximizing research outcomes by managing research resources on a virtual network
- Developing Japan's infrastructure for science and technology so as to accelerate innovation in science and technology

Goal Value				
Quantum Leaping	High Impact	Sustainability	Human Development	
Science and Technology Agency				

Japar

Strategic Program Packages

Integrated promotion of science, technology and innovation

Major Operation of JST

R&D Strategy	Strategic Basi	ic Research	Innovative Resea	arch Commercialization R&D
R&D Strategy Planning	Promoting Creation of Science, Technology and Innovation			
Center for R&D	Strategic Promotion of Basic Researches			
Strategy (CRDS)	R&D based on University-Industry Collaboration			
China Research and	Recovery and Revival from the Great East Japan Earthquake			
Communication	Promotion of International S&T Joint Projects			
	R&D System Reform		Total budget of FY2015 about 106.5 billion ven	
Center for Low Carbon Society	Promotion of ImPACT, SIP			
Strategy (LCS)				
		S&T Infra	structure	
Establishing an infrastructure to drive the generation of innovation - Soft infrastructure to support innovation -				
Knowledge Infrastructure		Next-Ge Develo	neration pment	Science Communication

Major Funding Programs of JST

Japan Science and Technology Agency

Structure of CREST and PRESTO Programs CREST/PRESTO = Virtual Networking Research Institute

Research Type	Budget per year	Total Budget	Research Period
CREST	¥30 - 100 Million /yr	¥150 - 500 Million	~ 5.5 years
PRESTO	¥10 Million /yr	¥30 - 40 Million	~ 3.5 years

Example of CREST Research

Category	Research Areas
Life Innovation	Innovative Technology Platforms for Integrated Single Cell Analysis
	Structural Life Science and Advanced Core Technologies for Innovative Life Science Research
	Creation of Fundamental Technologies for Understanding and Control of Biosystem Dynamics
Green Innovation	Creation of Innovative Core Technology for Manufacture and Use of Energy Carriers from Renewable Energy
	Establishment of core technology for the preservation and regeneration of marine biodiversity and ecosystems
	Phase Interface Science for Highly Efficient Energy Utilization
	Creation of essential technologies to utilize carbon dioxide as a resource through the enhancement of plant productivity and the exploitation of plant products
Nanotechnology	Development of Atomic or Molecular Two-Dimensional Functional Films and Creation of Fundamental Technologies for Their Applications
	Innovative Nano-electronics through Interdisciplinary Collaboration among Material, Device and System Layers
	Creation of Innovative Functional Materials with Advanced Properties by Hyper-nano-space Design
	Establishment of Molecular Technology towards the Creation of New Functions
Information and Communications Technology	Intelligent Information Processing Systems Creating Co-Experience Knowledge and Wisdom with Human-Machine Harmonious Collaboration
	Modeling Methods allied with Modern Mathematics
	Advanced Application Technologies to Boost Big Data Utilization for Multiple-Field Scientific Discovery and Social Problem Solving
	Advanced Core Technologies for Big Data Integration
	Creation of Fundamental Theory and Technology to Establish a Cooperative Distributed Energy Management System and Integration of Technologies Across Broad Disciplines Toward Social Application

JST Industry-Academia Collaboration Programs

Japan Science and Technology Agency

Overview of JST's Industrial-Academic Collaboration Support

Research outcomes in academia

(a) Intellectual Property Support

(b) Matching Support

(c) Research and Development Support

- Supporting patent acquisition

- Enhancing patent values
- Licensing patents
- Managing IP database
- Formulating IP strategies

Special meetings:

- New Technology Presentation Meetings
- The Universities Exhibition of Technology
- Open Innovation Seminars

SENTAN (先端) / COI / SUCCESS, etc.

Industry-Academia Collaboration Programs

JST's budget & support

Matching Support

- Approach from academia to industry
- **Innovation Japan**
 - Demonstration of cutting-edge research outcomes from academia to industry to promote business matching
 - Annual event since 2004 (August 27-28, 2015)
 - Co-hosted with NFDO
- New Technology Presentation Meetings
 - Offer opportunities to academic researchers to demonstrate research achievements to industry
 - 85 meetings in FY2014
 - Successful matching* ratio in FY2014: ≈24%

* Successful results such as joint research, technological advice

Matching Support

Approach from industry to academia

- Open Innovation Seminars
 - Offer opportunities to companies to give presentations on technological bottlenecks or needs to academia
 - 6 seminars in FY2014
 - Successful matching* ratio in FY2014: ≈ 27%

* Successful results such as joint research, technological consultation

Other services to facilitate industry-Academia collaboration

- Portal Site
- Monthly magazine
- Human Resource Development Program for Technology Transfer

Industry-Academia Collaboration Programs

JST's budget & support

Japan Science and Technology Agency

Remarkable Achievements of JST's Industrial-Academic Collaborative Projects

★ 1960	1970	1980	1990 2	2010	
1959- Artificial quartz	1972-1976 GaAlAsRed LED	1980- Natural interferonβ	1991-1996 Bi-Based superconducting wire	2001-2004 Water- ¹⁸ O for PET (positron- emission tomography)	
•Since 1958		wite			
	1978-1980	1986-	1991- • 1998-	2005-	
	Magnetic material	GaN Blue LED	NOYORI catalyst	Producing antibodies for	
	Amorphous metals	0 8	str and or	therapeutic and industrial use	
The test lists	f the second state	Nobel Prize in Physics		2006-	

(2014)

The total sales of these products are estimated to be upward of 6.8 billion USD from 1958 to 2013.

Japan Science and Technology Agency

Nobel Prize in Chemistry

(2001)

with short-term R&D

Our Recent Top Achievements

Prof. I. Akasaki Prof. H. Amano Prof. S. Nakamura Blue Light-emitting Diode
The Nobel Prize 2014

Prof. Shinya Yamanaka

iPS Cell The Nobel Prize 2012

Discovery that mature cells can be reprogrammed to become pluripotent

Prof. Hideo Hosono

IGZO Oxide Semiconductor TFT

Invention of thin film oxide semiconductor transistor for high-resolution low-power consumption display

Funding Programs

Programs	FY2015 Budget (Million USD*)
A-STEP (Adaptable and Seamless Technology Transfer Program)	80.5
SENTAN (Development of Systems and Technologies for Advanced Measurement Analysis)	17.9
Matching Planner Program	8.6
START (Program for Creating STart-ups from Advanced Research and Technology)	22.9
SUCCESS (SUpport program of Capital Contribution to Early-Stage companieS)	(25.0)**
COI (Center of Innovation) Program	81.9
Innovation Hub Construction Program	15.0
Research Complex Program	17.6

* 1 USD = 100 JPY, ** capital fund

29

JST Funding Programs Map

Funding Programs

- A-STEP
 - Transform academic research results into products

Ph	ase	Fund type	Amount*	Duration
Feasibility Study		Grants	≤ 0.2 M USD	1-2 years
	Industrial need-specific		≤ 0.25 M USD	2-5 years
	Strategic theme-specific		≤ 0.5 M USD	≤ 6 years
Practical Verification		Matching funds	0.2-5.0 M USD	2-6 years
Contract Development		Quasi loan	≤ 3.0 M USD	≤ 5 years
			≤ 15.0 M USD	≤ 10 years

* 1 USD = 100 JPY

Japan Science and Technology Agency

JST Funding Programs Map

The Center of Innovation (COI) Program

"Wish to Create a New Future"

How could we achieve mature society and lively atmosphere in a decade?

The COI Program encourages and promotes challenging and high-risk R&D to realize our visions for our ideal society.

Aging & Population Decrease in Japan

34

Japan's Burden

Each person in retirement was supported by 1.8 in work in 2025.

http://www.mof.go.jp/gallery/201401.htm

Copyright © The Economist Newspaper Limited 2014. http://www.economist.com/node/17522568 Jan Darkelay

Seven sources for innovative opportunity

(P.F. Drucker Innovation and Entrepreneurship)

Within the enterprise or industry(企業・産業の内部的要因):

- The unexpected (予期せぬ事) 1
- The incongruity(不調和、ギャップ) 2
- Innovation based on process need $(- \pi)$ 3
- Changes in industry structure or market structure(產業構造変化) 4.

Outside the enterprise or industry (企業・産業の外部的要因):

- Demographics (population changes)(人口構造の変化) 5.
- Changes in perception, mood and meaning(認識の変化) 6.
- New knowledge, both scientific and nonscientific(新しい知識) 7.

Japan in the 21th century= An Era of Continuous Innovation

COI(Center of Innovation)program

Vision-oriented, risk-taking R&D program aiming for a desirable society in the next decade

R&D program with a backcasting method Features

Aiming for a desired society, MEXT/JST has set the three visions. R&D agendas are designed to achieve those visions.

Under One Roof

Academia and industry are brought together under one roof for discussion and collaborative R&D.

Visions for a Society after a Decade

Change People

Vision 1: Secure sustainability as a country advanced in its aging population and declining birthrate (7 sites)

Vision 2: Create a living environment with a high qualith of life as a prosperous and Change Society

reputable country (4 sites)

Vision 3: Establish a sustainable society with vitality (7 sites)

Backcasting

Multi- and/or interdisciplinary R&D themes

COI SITES

[Management of the Site] **PL: Project Leader** (from Industry) Oversees the site's overall operations. RL: Research Leader (from Academia) Oversees the R&D and assists PL.

System of COI program

Backcasting Approach

R&D from the view of ideal society to be realized in a decade

Under one roof

Universities and companies work on R&D together under one roof.

Support

R&D expenses from 100 million to 1 billion yen/year for **9 years** (2013-2021)

1 % of outlays for promoting science and technology

Management Structure of the COI Program

COI STREAM Governing Committee Chairman

<u>Hiroshi Komiyama</u> Chairman of the Mitsubishi Research Institute, Inc. President Emeritus of the University of Tokyo

Principal Visionary Leader

<u>Michinari</u> <u>Hamaguchi</u> President Emeritus of the Nagoya University

Vision 1

Visionary Leader

Yuzuru Matsuda Former Executive President, Kyowa Hakko Kirin Co., Ltd

Assistant: Ichiro Miki

Vision 2

Visionary Leader

Akira Yokota Former Executive Vice President, ITOCHU Co.

Assistant: Seiichi Kimoto

Vision 3

Visionary Leader

Masaharu Sumikawa

Former Chairman, Hitachi, Ltd.

Assistant: Hisashi Sawada

Visions of COI

Structure of COI Program

How should we change society and people by the end of the next decade? Challenging and high-risk R&D.

Research and Development Agreement and Funding

COI Program is the main funding program in Center of Innovation Science and Technology based Radical Innovation and Entrepreneurship Program (**COI STREAM**) by MEXT and JST.

COI Sites (V1: 7, V2: 4, V3: 7, Total: 18 Sites)

[V1] Center of Healthy Aging Innovation Hirosaki University / MCS Corporation

Q

0

O

C

[V3] Frontier Center for Organic System Innovations Yamagata University / Dai Nippon Printing Co., Ltd.

[V2] Center of KANSEI Innovation Nurturing Mental Welfare Hiroshima University / Mazda Motor Corporation

[V3] Center for Co-Evolutional Social Systems Kyusyu University [V3] Global Aqua Innovation Center for Improving Living Standards and Water Sustainability Shinshu University / Hitachi Infrastructure Systems Company

[V3] Construction of next-generation infrastructure using innovative materials Kanazawa Institute of Technology Daiwa House Industry Co., Ltd.

 \bigcirc

 \mathbf{n}

[V2] COI Site to develop a "Super Nippon-jin" by activating human power Osaka University / Panasonic Corporation

0

[V1] The Last 5X Innovation R&D Center for a Smart, Happy, and Resilient Society Kyoto University / Panasonic Corporation

[V3] Innovation Hub for a "Mobility Society Nagoya University / Toyota Motor Corporation

[V1] Bright Future for All

by Daily Exercise

Ages with Health Innovation

[V1] The center of innovation for creation of platform on big life data from unconscious sensing to support human and social well-being

[V1]Innovative Food & Healthcare

Hokkaido University / Hitachi, Ltd.

Tohoku University / Toshiba Co.

MASTER

[V1] Self-Managing Healthy Society The University of Tokyo

> [V3] Innovative Center for Coherent Photon Technology The University of Tokyo

[V2] Creating Innovation for "Synesensory" through Inspirational Art and Science and Technology Tokyo University of the Arts / JVC Kenwood Co.

[V2] Happiness Co-Creation Society through Intelligent Communications Tokyo Institute of Technology / KDDI R&D Labs., Inc.

[V1] Center of Open Innovation Network for Smart Lifecare Kawasaki Institute of Industry Promotion

[V3] Center of Kansei-oriented Digital Fabrication Keio University

Review of COI Sites

Monitoring the progress Support and suggestions for R&D activities Funding in accord with R&D plan Arrangement of collaboration

Growth of Market

A and B are real targets of COI program: Innovation in a decade

Remarkable Results in 2014

Products

DeNA Life Science, Inc.

 ✓ Mycode, a genetic testing service in Japan (8/12~)

Toshiba Co., Ltd.

 ✓ Japonica Array[™], a genotyping array optimized for ethnic Japanese (12/1~)

Kawasaki (COINS)

 ✓ Light-responsive nanomachine : transfer specific gene into target cells and release gene by irradiation with light

Remarkable Results in 2015

Products

Toyobo Co., Ltd.

 ✓ Strechable print electrode COCOMI[™] for smartware (8/11~)

Collaboration

Joint of cohort studies.

- ✓ COI Cohort Collaboration Organization has been established in COI stream.
- ✓ Iwaki cohort at Hirosaki Univ. and Hisayama cohort at Kyusyu Univ. have started a joint study on dementia

DECLARATION ON SCIENCE AND THE USE OF SCIENTIFIC KNOWLEDGE (Budapest Declaration 1999)

- 1. Science for knowledge; knowledge for progress
- 2. Science for peace
- 3. Science for development
- 4. Science in society and science for society

The practice of scientific research and the use of knowledge from that research should always aim at the welfare of humankind, including the reduction of poverty, be respectful of the dignity and rights of human beings, and of the global environment, and take fully into account our responsibility towards present and future generations. There should be a new commitment to these important principles by all parties concerned.

Nurturing Young Generation

Science Communication

Science, technology and innovation is deeply related to the society
 More efforts are given to science communication to bridge our activities to the society

Science Museum "MIRAIKAN"

The biggest and most successful science event in Japan "Science Agora"

Programs for Global Collaboration - Generate synergies-

Bi-lateral

International Collaboration

SICP: More than 400 projects since 2003 with 23 countries and area SICORP: 23 projects since 2009 with 6

countries and area

J-RAPID

Promoting Globalization on Strategic Basic Research Programs

R&D Support of Collaboration with Developing Countries (Partnership with JICA)

20 Projects in 14 countries in Africa (87 Projects in 41 countries since 2008)

Multi-lateral International Collaboration

SICP: <u>Strategic International Cooperative Program</u>
SICORP: <u>Strategic International Collaborative Research</u>

<u>Program</u>

SATREPS: <u>Science and Technology Research Partnership</u>

for <u>Sustainable Development</u>

e-ASIA JRP: <u>East Asia Joint Research Program</u>
J-RAPID: Japanese Grants for <u>Rapid</u> Response Research
CONCERT Japan: <u>Connecting and Coordinating</u>

<u>European Research and Technology</u>
Development with Japan project

IHEC: International Human Epigenome Consortium

"JST has been working and will work to create a sustainable and hopeful future through innovation"

Thank you for your attention!

Japan Science and Technology Agency